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The procedure used to establish design
criteria for band-stop filters utilizing the

resonators of Fig. 3 is straightforward. The

basic section of the filter of Fig. 1 is con-
sidered to be a quarter-wavelength trans-

mission line shunted at its mid-point by a
series resonant circuit as shown in Fig. 4.

The image parameters of the resonators of

Figs. 3 and4 are then equated. The slope
parameter of the shunt series-resonant cir-
cuit is then related to the coupling parameter

of the paraIlel conpled lines.

c-l J-+

A
Fig. 4—Basic section of falter in Fig. 1.

For the resonator of Fig. 3 the image

parameters are
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where

k =dl–c2~l–c’/2 fore’<<1, (3)

Zoe – zoo
~=

z,, + zoo
= coupling parameter, (4)

2., = even-mode characteristic impedance

with respect to ground of each con-

ductor.

2.. = odd-mode characteristic imped-

ance with respect to ground of each
conductor.

@ is detined in Fig. 3.
For the resonator of Fig. 4 the image

parameters are

21’ = Z.dtan @(tan @ + y)
(5)
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where

‘=x-++ ‘7)

Thus if ZZ = 21’, then 71= -y,’. Equating the
image impedances ~-ields

y= +(1 – cot~ ~). (8)

The slope parameter of the shunt series-

resonant circuit is given by

(9)

and is given in terms of the low-pass proto-

type elements by Young, et al. Using (7)

and (8)

Therefore,

ol-

Using the expressions for x;, the slope
parameter for the ith shunt resonator, given
by Young,

(13)

This completes the derivation of the design
criteria. Identical resnlts are obtained by
considering the beha ~-ior of the resonators
near resonance, rising the expressions for L
and C given by Young, et ai., in terms of the
low pass prototype, and satisfying (8). In
this case the approximations required are

(:-3=2(%3 “6)
and

[“:(5312
()(d-q

=1+:—.
2

(17)
~o

These approximations are quite ~-slid for

narrow bandwidth filters.

It should also be noted that a second
type of r esouator similar to that shown in

Fig. 3 may also be used. For the latter the
short circuits in Fig. 3 are replaced by open

circuits. The design criteria may be de-

veloped in a manner similar to the above.
However, this type of resonator requires
compensation dne to fringing at the open
circuit ends. In addition some sort of support
such as a dielectric post is required which
tends to decrease unloaded Q. Hence, it is

believed that the resonator of Fig. 3 is more
suitable for practical applications.

Model work on filters of this type will
begin shortly.

ROBERT ~. S’I’.4NDLEY

A. C. TODD

IIT Research Institute

Chicago, Ill.

Comments on “Maximum Efficien-

cy of a Two Arm Waveguide

Junction”*

In connection with a recent communi-
cation by Beattyl I wish to advise you that

we have been studying the two-arm dis-
sipative waveguide junction in our labora-

tory. Two years ago I Flu blishedz,3 a new
demonstration of Deschamp’s method for
measuring scattering coefficients and the
general properties of those coefficients.

In a recent work, not yet published, we
show the variations of the absorbed power

against the reflection coefficient t of the ter-
minal load.

S. LEFEUVKIZ

13cole Nationale Sup&ienre d’Electrotech-

nique, d’Electronique et d’ H ydraulique

Universit& de Toulouse, France

A Uniform Coaxial Line with an

Elliptic-Circular Cross Section*

Analysis and design ctf a nonuniform co-
axial line with an isoperirnetric sheath de-
forlmatiou has been reported.1 The object of

this note is to show that the procedure fol-
lowed therein can be adopted for evaluating

some of the essential features of an infinitely

long ideal transmission line with an elliptic

sheath and a circular inner conductor. Apart
from its reported use with the nonuniform
line, this type of structure may also be
found in medium and large sized electro-
nuclear machines,z

1, ~INE CON 5TANTS

Eqs. ( 15)–(21 ) in the communication

quotedl provide expressions for the primary

and the secondary constants of the line as
follows :

Capacitance per unit length = C = ~~ (la)

External inductance per unit length

= 1’ = ~ (lb)

Characteristic impedance

* Received March 11, 1963; revised manuscript
received July 23, 1963.

1 N. Seshagiri, “A non-uniform lme with an iso-
perimetric sheath deformation, ” this issue, page 478.

Z P. M. Morse and H. Feshbach, “Methods of
Theoretical Physics, ,, McGr,z~r. Hill Book CO.. Inc..

New York, N. Y., P. 1204; 1’953.
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The phase constant = (3 = ro~~. (2b)

11. TEM W’AVE EQUATION

The approximate equations representing

the TEM wave are derived in four steps.

First, the expressions for the rms electric and

magnetic field strengths for an infinite uni-

form line having a circular eccentric outer

conductor is given. Then, these equations

are remodeled in the polar form with the

origin reckoned at the center of the inner

conductor. Next, two compensations, viz.,

a radial coordinate shrinking and an equiv-

alent capacitance are described. Finally,

the effect of these two compensations are

superposed on the polar equation gi~.en by

the second step to get the resultant expres-

sion for the TEM wave.

A. Structure wdl~ a Circular Eccentric Oate~
Co~lductor

Fig. 1 shows a simple, nonlinear trans-

formation of a half-plane structure in the Z

plane consisting of a half ellipse and a semi-

circle, by an analytic relation,

w = 22. (3)

The transformed structure in the H’ plane is

an ellipse of lesser eccentricity than that of
the original structure. By the properties of
the transformation, the following relations
m-e applicable:

al = *(aoz + b02)

el = ~(a02 — boz)

yl = ~,~, (3a)

For the case of the auxiliary circle about

the displaced transformed elliptic sheath of

Fig. l(b), the electric and magnetic fields
can be mapped using the bipolar coor-
dinates” (u, v, z) and it can be shown that,

z Plane W Plane

-4sazM”-@.x/,
‘.. - ,. . . . .

(b) (b)

Fig. l—Transformation of the half structure of the
elliptic-circular coaxial bne mto a noncoaxial
elbptlc-circulw configuration.

{ i /_~
E rms au

H=a”nns

70

V,~, (cosh u – cos u)e–jfl”
–— . (4)

ar(z62 — 2$1)

Here,

E.m, = rms electric field strength (com-
plex),

H.~, = rms magnetic field strength ( com-
plex),

a = unit vector,

z P. Moon and D. E. Spencer, “Cylindrical and ro-
tational coordinate system, ” J. Fvanklin Inst., vol.
252, PP. 327–343; October, 1951.

4 P. Moon and D. E, Spencer, l’TEM wave in
cylindrical system s,” J. Fva?zhlix Imt., vol. 256, pp,
325–353; October, 1953.

V,~, =rms voltage at (z= O),
z = distance along the z-axis,

uI, u~ = u at the outer, inner boundary,

~o = intrinsic impedance,

and

a, = ~ [e,’ – 2el’(a12 + 712)

+ (alz – r,’) 2]1/2. (4a)

B. Pokrr Fof’?n

The compensations that are deduced in
the next step necessitate the conversion of

(4) into the polar form with the origin reck-
oned at the center of the transformed inner
conductor instead of the geometric center of
the bipolar coordinate. If (r, 8, z) refers to
the transformed structure of Fig. l(b), then,

where,

D = (P + W2 + 2tw cos 0)2 + a,4

– 2a,2(P cos 2e + w,’ + 2W cos 0) (6)

In (5) (uZ –u,) is retained with the same
meaning as conveyed by (4) for a future
identification of this with a term in an
equivalent capacitance. Also, the subscripts
IL and v in the unit vector of (5) are related

to the expressions

[
2a,(. cos % + w,)

u = sinh–l ——
4D 1 (7a)

“=4%%]
C. Cowf>ensatiom

(7b)

Two compensations are considered: a
radial shrinking from the standpoint of

boundary conditions, and an equivalent

capacitance based on field considerations.

e
Equ9p0tential lines of force

(a)

Arc of the ctrcle

Arc of the cllIPse. \

(a)

Fig. 2—FieId map for deriving a radial shrinking
compensation from an electrostatic experiment.

ao = ~~o and Y;= 0.5 bo. The electric lines of
force, terminating at equipotential points

Pm and Pc on the periphery of the ellipse

and the circle, each taken one at a time, are
traced for two representative radii vectors at
45° and 90°. For an intermediate value of
the potential, a second set of equipotential
lines are identified. The point Pc’ is the

intersection of the electric line and the equi-

potential line for the circular case and PB’
for the elliptic case. If a point P~” is marked

on the radial line obtained by a linear shrink-
ing of P,’Pc’ equal to P.@i/PCPi, it can be

observed from Fig. 2 that PE” is very close
to the near trijunctiou of the electric line,

the potential line and the radial line taken

with respect to the ellipse. This ratio is ex-

pressed as

where

f, = Cl COS 0 + (alz — elz sing /3)1)2, (8a)

and

b,’e, cos O + a,b, [(a,’.—
—elz) Sinz 6 + blz COS26’]1/2

r.—

blz Cosz o + al~ sins o
(8b)

1) Radial Coordinate Shrinking:

For 1 <a O/b,< 2.5, as shown earlier, the
transformation given by (3) maps the
elliptic outer conductor into a nearly circu-
lar one. It will be shown presently on the

basis of an experiment that using an ap-
proximate method the field map obtained

from the eccentric circular cylinders can be

adopted to draw the field map for a nearly

circular eccentric outer. This will be effected

in such a way that on the surface of the inner

conductor there will be no change in the

field configuration, while at the other

boundary, the auxiliary circle will be iden-

tified with the nearly circular ellipse.

Fig. 2 gives the electric lines of force and

potential lines for the displaced ellipse and

its auxiliary circle in the W plane, being the

result of an electrostatic experiment per-

formed for a representative case in which

2) Equivalent Capacdance:

Ellipticity of the transformed outer con-
ductor causes an intensification of the equi-
potential surfaces than that corresponding
to the auxiliary cylinder, This is equivalent

to an increase in the static capacity. From
(4) it has been shown by Moon and Spencer’
that

(a, – a,) = P/co (9)

where @ is a constant and CO is the capaci-
tance. Also, from (4) and (9) the term

(C, T~,,JF’a,) stands for a magnitude where
CO/a, depends upon the structure. The rest
of the terms in (4), however, stand for the
position and the direction of the magnitude.

5 P. Moon and D. E. Spencer, “Field Theory for
Engineers, ” D. Van Nostrand Inc., Princeton, N. J.,
PD. 366–368; 1961.
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A capacitance equi~-aleut to CO, when the

outer structure has a near circularity, is

given by ( la).

D. Supe~position

It will now be assumed that, when the
transformed structure does not deviate far
from circularity, the two compensations can
be applied mutually independent of each
other. This is because the first compensation
is positional, while the second is one of
magnitude. Thus, superposing the two com-
pensations in (5) and considering polar co-
ordinates (v, @, z) with respect to the orig-
inal structure in the Z plane, the following
expression describing the TENT wave is ob-
tained

Here, if (6) to (8) are represented
form,

24,v, D = F1, F:, F3(f’, e)

and

~ = F.(f3) – Y1

Fe(o) – r,

then,

u’> t’, D’ = Fl, F*, F$

(to)

in the

and

Fg(2@) – ?IR,. —
Fc[2@) – ?1

III. FORCE ON THE INNIILL CCINDI’CTOR

From the properties of the transforma-

tion (3) and the bipolar coordinates the
magnitude of a force acting on the inner

conductor can be deduced.

F= force per unit length of the line,

w = energy stored in the electric field,

V= voltage difference between the inner
and the outer conductors.

A one-to-on: correspondence shows that

forces ~ and F act on the inner conductor for

the full structure along the minor axis of the
ellipse in a direction tending to compress

the former. The resultant displacement of

the inner con ductor from the geometric

center of the ellipse, in conformity with

quarter symmetry, is zero, by virtue of the

equal and opposite nature of ~ and ~
~T. SEs**~lR1

Dept. Electrical Communication
Engineering

Indian Institute of Science,
Bangalore, India

Discontinuity Effects in Single

Resonator Traveling Wave Filters*

In a previous correspondence the exact
frequency response of the single resonator

traveling ~vave directional filter was pre-

sented assuming that all transmission lines

had characteristic impedances equal to the

terminating impedance of the network. I The

purpose of this correspondence is to extend
the previous work to take into account the
case where the transmission lines connecting
the parallel coupled lines have an arbitrary

characteristic impedance Zr. The resulting

structure is shown in Fig. 1.

Fig. l—Directional filter with arbitrary loop sides.

Tbc symmetric-asymrnctric excitation

analysis is applied as discussed in the previ-

ous correspondence, with the transmission
line matrix representing the loop sides plus

corner equivalents replaced by

—

sinh w

2[
cosh a~

In general cr, = jfll, and ZI will be real so that
th~ above bec~mes

Cos (31

sin /31

l—
z!

hIaking this change, carrving out the
matrix multiplication- and calcul~tiug the

transfer and reflection coefficients there is
obtained,

T,9 = 2
{[(

sin BI sinh h
2 cosh 2a COS ~1 + z —

(

z~ 21
—cotf3—-tan O

“ 21 ))1

+Odil+:)co+’”

(
ZI z“—sinhz a — tanz o + — cot2 o
z~ z, ))

(1)

II

–1
+ cos B, sinh 2a(tan @– cot O)

* Based on part of the research work ur, d.risk.n
by Robert D. Stiandley m partad fulfillment of tbe
requirements for the Ph. D. degree at Ilhnols In stltute
of Technology; Chicago, Ill.

1 R. D. Stanclley, “Frequency response of str
line traveling wave directional filters, ” IEEE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. 11, PP. 264–265; July, 1963.
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TA=2
{[(

sin (J’1sinh 20J
2 cosh 2. COS 191 + —-y——

“(21 z~

))1
—cOt O——tanl9 I

+:[sin’’?:””;)Co’h’”

(

ZI z,
— sin~ a — cot! O + –– ta.nz O

z“ 21 ))

+ cos D, sinh 2a(tan f? – cot 6)
11

r’=’: {’in~’[(;--;)co’h’~

(
z, 21—sinhz a — cotz 19- — tanz f?
21 z, )1

cos 13~sinh 2a (cot 6 + tan O)
1

“’=: +!Sin’’[(:-;) Cosh’a

(

Zo
+ sinh’ a 2 cotz O – — tanz O

z, 21 )1

+ cos B, sinh 2a(cot o + tan 0)
1

where

Cosh ~ _ 2,. + zoo

20. – 200

(2)

(3)

(4)

and the other symbols are defined in Fig. 1.

Hence in the general case where ZZ #Zo,

TA # ;rs
rA # ]’,$.

Referring to the equations for the output
\-oltages, the abo~-e results mean that:

1) A finite retlectiou will result at port 1.
2) Port 3 is not isolated.

3) .1 Butter\vorth response will not re-

sult at port 2.

In order to show the above more conclu-
sively and to obtain au idea as to the effect

of the ratio ZZ/Zo, ( 1) through (4) were used
to calculate the network response. Loaded
Q \-alue. of 50 and 100 were used with
ZI/Zo as a parameter. It was also assumed
that 26= @r. The results of the calculations
are plotted in Figs. 2–5 for Qr, = 100.

It is important to note that the comp-

uted results predict the experimentally ob-
served fact that a mis,~ligned filter of this

type yields a double resonance response

shape.

To obtain a lmowleclge of the effect of (Ir,
the resuonses were calculated with 2fI/bz =k
as a ~arameter. It was assumed that fir

would ha~-e a linear frequency dependence
over the limited range of electrical angle of
the calculations. The results were plotted
and it was found that the primary effect of
having k # 1 is to shift the resona]lt fre-

quency to

where it has been assumed that

~f
28=–-—.

2 fo


