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The procedure used to establish design
criteria for band-stop filters utilizing the
resonators of Fig. 3 is straightforward. The
basic section of the filter of Fig. 1 is con-
sidered to be a quarter-wavelength trans-
mission line shunted at its mid-point by a
series resonant circuit as shown in Fig. 4.
The image parameters of the resonators of
Figs. 3 and 4 are then equated. The slope
parameter of the shunt series-resonant cir-
cuit is then related to the coupling parameter
of the parallel coupled lines.
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Fig. 4—Basic section of filter in Fig. 1.

For the resonator of Fig. 3 the image
parameters are

tanZé — b
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where

E=+1—c2>>21—¢%2 fore?Kk1, (3)

Zae - Zoo .

¢ = —————— = coupling parameter, (4)
Zoe + Zoo

Z.,.=even-mode characteristic impedance
with respect to ground of each con-
ductor.

Z,=odd-mode characteristic imped-
ance with respect to ground of each
conductor.

¢ is defined in Fig. 3.
For the resonator of Fig. 4 the image
parameters are
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Thus if Zy=2Z/, then vr=~/
image impedances yields

2 —c

. Equating the

y = (1 — cot? ¢). 8

The slope parameter of the shunt series-
resonant circuit is given by
_@ aX

2 dw =g
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and is given in terms of the low-pass proto-
type elements by Young, e¢f al. Using (7)
and (8)
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dslomsy @0 Zo (10)
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Using the expressions for x;, the slope
parameter for the 7th shunt resonator, given
by Young,
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for i-even, (14)

¢, = 1/__‘%&4 fori-odd.  (15)
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This completes the derivation of the design
criteria. Identical results are obtained by
considering the behavior of the resonators
near resonance, using the expressions for L
and C given by Young, ef al., in terms of the
low pass prototype, and satisfying (8). In
this case the approximations required are

i_ﬂ’)gzc’_‘““) (16)
wo (3] wo
and
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These approximations are quite valid for
narrow bandwidth filters.

It should also be noted that a second
type of resonator similar to that shown in
Fig. 3 may also be used. For the latter the
short circuits in Fig. 3 are replaced by open
circuits. The design criteria may be de-
veloped in a manner similar to the above.
However, this type of resonator requires
compensation due to fringing at the open
circuit ends. In addition some sort of support
such as a dielectric post is required which
tends to decrease unloaded Q. Hence, it is
believed that the resonator of Fig. 3 is more
suitable for practical applications,

Model work on filters of this type will
begin shortly.

ROBERT D. STANDLEY
A. C. Topp
IIT Research Institute
Chicago, 111
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Comments on “Maximum Efficien-
cy of a Two Arm Waveguide
Junction”*

In connection with a recent communi-
cation by Beatty' I wish to advise you that
we have been studying the two-arm dis-
sipative waveguide junction in our labora-
tory. Two years ago I published*?® a new
demonstration of Deschamp’s method for
measuring scattering coefficients and the
general properties of those coefficients.

In a recent work, not yet published, we
show the variations of the absorbed power
against the reflection coefficient of the ter-
minal load.

S. LEFEUVRE

Ecole Nationale Supérieure d’Electrotech-
nique, d’Electronique et d'Hydraulique
Université de Toulouse, France

* Received July 22 1963.
1R Beatty, Mavnmum efficiency of a two
arm waveguide junction,” IEEE TrANS. oN MICRO-
WAVE THEORY AND TECHNIQUIS (Correspondence),
vol. MTT-11, p. 94; January, 1963.

28, Lefeuvre “Determmdtxon de Vimpédance
caractéristique d'un quadripole quelconque en hyper-
iréquences,” Compi. Rend. Acad. Sce., vol. 250, pp.
3288-3289, 1960,

38, Lefeuvre “Quelque propriétés des quadripoles
dissipatifs en hs perfréquences,” Compt. Rend. Acad.
Sei., vol. 252, pp. 4135-4136; 1961,

A TUniform Coaxial Line with an
Elliptic-Circular Cross Section*

Analysis and design of a nonuniform co-
axial line with an isoperimetric sheath de-
formation has been reported.! The object of
this note is to show that the procedure fol-
lowed therein can be adopted for evaluating
some of the essential {eatures of an infinitely
long ideal transmission line with an elliptic
sheath and a circular inner conductor. Apart
from its reported use with the nonuniform
line, this type of structure may also be
found in medium and large sized electro-
nuclear machines.?

I. Ling CONSTANTS

Eqgs. (15)—-(21) in the communication
quoted! provide expressions for the primary
and the secondary constants of the line as
follows:

4
Capacitance per unit length = C = iGTf (1a)

External inductance per unit length
=lt=— (1b)

Characteristic impedance
¢ /=
=Z¢= _1/ £ (2a)
4 €

* Received March 11, 1963; revised manuscript
recexved July 23, 1963,
1 N. Seshaglrl, “A non- umform line with an iso-
perxmetnc sheath deformaticn,” this issue, page 478.
2P, Morse and H. Feshbach, “Methods of
Theoretical Physice,” McGraw-Hill Book Co., Inc.,
New York, N. V., p. 1204; 1953.
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The phase constant = 8 = w+/eu. (2b)
II. TEM Wave EQUATION

The approximate equations representing
the TEM wave are derived in four steps.
First, the expressions for the rms electric and
magnetic field strengths for an infinite uni-
form line having a circular eccentric outer
conductor is given. Then, these equations
are remodeled in the polar form with the
origin reckoned at the center of the inner
conductor. Next, two compensatious, viz.,
a radial coordinate shrinking and an equiv-
alent capacitance are described. Finally,
the effect of these two compensations are
superposed on the polar equation given by
the second step to get the resultant expres-
sion for the TEM wave.

A, Structure with a Circular Eccentric Quier
Conductor

Fig. 1 shows a simple, nonlinear trans-
formation of a half-plane structure in the Z
plane consisting of a half ellipse and a semi-
circle, by an analytic relation,

W = Z2, 3)

The transformed structure in the 117 plane is
an ellipse of lesser eccentricity than that of
the original structure. By the properties of
the transformation, the following relations
are applicable:

ar = $(a® + b¢%)

e1 = ¥(ao® — bo?)
¥ = I‘¢2. (38.)
For the case of the auxiliary circle about
the displaced transformed elliptic sheath of
Fig. 1(b), the electric and magnetic fields

can be mapped using the bipolar coor-
dinates®* (u, 7, z) and it can be shown that,

W Plane

Z Plane

(b)
Fig. 1—Transformation of the half structure of the

elliptic-circular coaxial line into a noncoaxial
elliptic-circular configuration.

gErms$ R
Hime ay

70
Vims(cosh & — cos z) e8>

4
ar(uy — u1) @
Here,
Ems=rms electric field strength (com-
plex),
H,,s=rms magnetic field strength (com-
plex),

a=unit vector,

3 P. Moon and D. E. Spencer, “Cylindrical and ro-
tational coordinate system,” J. Franklin Inst., vol.
252, pp. 327-343; October, 1951.

4P. Moon and D. E. Spencer, “TEM wave in
cylindrical systems,” J. Frauklin Inst., vol. 256, pp.
325-353; October, 1953.
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Vims =rms voltage at (2=0),
z=distance along the z-axis,
u1, e=u at the outer, inner boundary,
no=intrinsic impedance,

and

1
4 = —— e — 2e(a1® + 1%
281

+ (a2 = 22 (4a)

B. Polar Form
The compensations that are deduced in
the next step necessitate the conversion of
(4) into the polar form with the origin reck-
oned at the center of the transformed inner
conductor instead of the geometric center of
the bipolar coordinate. If (7, 6, 2) refers to
the transformed structure of Fig. 1(b), then,

3 Erms% _ (& zarVrmseiﬂsz
Hims h ay (u?. - lh)\/ﬁ
Lo

©)

where,
D = (r 4+ wi® + 2rw, cos6)? + a,*
— 2a,2(r2 cos 20 + w12 + 2rwicosd) (6)
w = Vb (6a)

In (5) (uz—w) is retained with the same
meaning as conveyed by (4) for a future
identification of this with a term in an
equivalent capacitance. Also, the subscripts
u and v in the unit vector of (5) are related
to the expressions

2a, 2]

= sinh-1 [_<_\/_btw_> (72)
T i [4

o = sin~1 [3“—:/%& . (7b)

C. Compensations

Two compensations are considered: a
radial shrinking from the standpoint of
boundary conditions, and an equivalent
capacitance based on field considerations.

_ b12e; cos 0 + albl[(dl2 — e1?) sin?@ + 5,2 cos? 0]1’2
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Wy Arc of the circle

Inner Arc of the ellipse
conductor

Radius vector at 45° Pe

Wy Electric lines
Equipotential lines of force
(a)
Arc of the circle
Arc of the ellipse
Radius vector at 90°\P; Wy

W Pe
Al
Inner conduclo
Electric tines
Wyx| Equipotential lines of force
(a)

Fig. 2—Field map for deriving a radial shrinking
compensation from an electrostatic experiment.

ap=2by and r;=0.5 by. The electric lines of
force, terminating at equipotential points
Pg and Pc¢ on the periphery of the ellipse
and the circle, each taken one at a time, are
traced for two representative radii vectors at
45° and 90°. For an intermediate value of
the potential, a second set of equipotential
lines are identified. The point P¢’ is the
intersection of the electric line and the equi-
potential line for the circular case and Pz’
for the elliptic case. If a point Pz’ is marked
on the radial line obtained by a linear shrinlk-
ing of P,/P¢’ equal to PgP;/PcP;, it can be
observed from Fig. 2 that Py’ is very close
to the near trijunction of the electric line,
the potential line and the radial line taken
with respect to the ellipse. This ratio is ex-
pressed as

Fe— 71

R = )

fo— 11
where
7o = ¢1 €080 + (a2 — e?sin?0)V2, (8a)

and

Ye =

b12 cos? 6 + a;2 sin2 8

1) Radial Coordinate Shrinking:

For 1<ae/by<2.5, as shown earlier, the
transformation given by (3) maps the
elliptic outer conductor into a nearly circu-
lar one. It will be shown presently on the
basis of an experiment that using an ap-
proximate method the field map obtained
from the eccentric circular cylinders can be
adopted to draw the field map for a nearly
circular eccentric outer. This will be effected
in such a way that on the surface of the inner
conductor there will be no change in the
field configuration, while at the other
boundary, the auxiliary circle will be iden-
tified with the nearly circular ellipse.

Fig. 2 gives the electric lines of force and
potential lines for the displaced ellipse and
its auxiliary circle in the W plane, being the
result of an electrostatic experiment per-
formed for a representative case in which

(8b)

2) Egquivalent Capacitance:

Ellipticity of the transformed outer con-
ductor causes an intensification of the equi-
potential surfaces than that corresponding
to the auxiliary cylinder. This is equivalent
to an increase in the static capacity. From
(4) it has been shown by Moon and Spencer®
that

(1 — ug) = P/Cy 9)

where p is a constant and C, is the capaci-
tance. Also, from (4) and (9) the term
(CoVimo/Pa,) stands for a magnitude where
Co/ar depends upon the structure. The rest
of the terms in (4), however, stand for the
position and the direction of the magnitude.

8 P. Moon and D. E. Spencer, “Field Theory for
Engineers,” D. Van Nostrand Inc., Princeton, N. J.,
DD. 366-368; 1961.
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A capacitance equivalent to Co, when the
outer structure has a near circularity, is
given by (1a).

D. Superposition

It will now be assumed that, when the
transformed structure does not deviate far
from circularity, the two compensations can
be applied mutually independent of each
other. This is because the first compensation
is positional, while the second is one of
magnitude. Thus, superposing the two com-
pensations in (5) and considering polar co-
ordinates (4, ©, 2) with respect to the orig-
inal structure in the Z plane, the following
expression describing the TEM wave is ob-
tained

ay ) 4arVemse %2

bk = a2} Covir

(10

no

Here, if (6) to (8) are represented in the
form,

u, v, D = Fy, Fa, F3(r, 0)
and
Fo(6) — n
B8 =
then,

’ll,, 1", D = Fl, FQ, Fy

T(n"+tRn—n ) J
[( R » 20

and

_ F20) — 1
F20) — 1

7

ITI. Force oN THE INNER CONDUCTOR

From the properties of the transforma-
tion (3) and the bipolar coordinate the
magnitude of a force acting on the inner
conductor can be deduced.

dw  wel?

F = -
d€1 d,GZ

(1)

where

F=force per unit length of the line,
w=energy stored in the electric field,
V =voltage difference between the inner
and the outer conductors.
A one—to-om(e_ correspondence shows that

forces Fand F act on the inner conductor for

the full structure along the minor axis of the

ellipse in a direction tending to compress

the former. The resultant displacement of

the inner conductor from the geometric

center of the ellipse, in conformity with

quarter symmetry, is zero, by_)virtue (_of the
equal and opposite nature of F and F.

N. SESHAGIRI

Dept. Electrical Communication

Engineering

Indian Institute of Science,

Bangalore, India
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Discontinuity Effects in Single
Resonator Traveling Wave Filters*

In a previous correspondence the exact
frequency response of the single resonator
traveling wave directional filter was pre-
sented assuming that all transmission lines
had characteristic impedances equal to the
terminating impedance of the network.! The
purpose of this correspondence is to extend
the previous work to take into account the
case where the transmission lines connecting
the parallel coupled lines have an arbitrary
characteristic impedance Z;. The resulting
structure is shown in Fig. 1.

Port 2o [

vort e T bo rore

Fig. 1—Directional filter with arbitrary loop sides.

The symmetric-asymnietric  excitation
analysis is applied as discussed in the previ-
ous correspondence, with the transmission
line matris representing the loop sides plus
corner equivalents replaced by

cosh o7 | Z;sinhar
sinh ay
cosh ar
7y

In general ar=jBs, and Z; will be real so that
the above becomes

cos fBr 471 sin B¢
. sin B[ .
s
7 mn 3y

Making this change, carrving out the
matrix multiplication, and calculating the
transfer and reflection coefficients there is
obtained,

sin 87 sinh 2a

Tg =2§[2 (coshZacosﬁI+ P

(Zg Zy
| —cotf — —tan 0))]
Zr Zy
+7 [sinﬁ ((é +-Z~l) cosh?
J 74 7 Zu @
VA Z
——sinhﬁa(—z‘;tan20+z—jcot20)> @]

-1
=+ cos Brsinh 2«(tan 6 — cot 0):' 2

* Based on part of the research work undertaken
by Robert D, Standley in partial fulfillment of the
requirements for the Ph.D, degree at Illinois Institute
of Technology; Chicago, Ill.

1 R. D. Standley, “Frequency response of str
line traveling wave directional filters,” IEERL
TRANS. ON MICROWAVE THEORY AND TILCHNIQUES,
vol. 11, pp. 264-265; July, 1963.
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sin 87 sinh 2«

Ty = 2% I:Z (cosh 2¢ cos 81 + ————
Z[ ZQ
( —colf — — ta.n@))]
Zy VA
T Zy 7 .
+7 I:sm B ( —Z —+ Z)) cosh? o
sinh? ( Z cot?d -+ Zo tan? 0))
— 2o 22 coteg + 22
Zy Zr
-+ cos B sinh 2a(tan # — cot 0)] % 2)
r .ng. 8 [(Zz Zo) be
gy =7 — {sin — — — }cos
ST VINZ T 4 *
. Zo ZI
— sinh?a (w cot?d — —-tan? 0>:|
Zr Zo
— cos B¢ sinh 2a(cot ¢ + tan 6) % 3)
T Z Z
T4 =j7“351n61 [(2—: - AZ) cosh?

Z VA
4 sinh? & (—I cot?g — o0 tan? 0)]
Zys Zr

~+ cos Br sinh 2« (cot 6 + tan 9) % 4)

where

Z()e + ZOO
cosha = ————
ZOe - ZD[]
and the other symbols are defined in Fig. 1.
Hence in the general case where Z;#Z,,

Ta#=Tg
Fa #71s.

Referring to the equations for the output
voltages, the above results mean that:

1) A finite reflection will result at port 1.

2) Port 3 is not isolated.

3) A Butterworth response will not re-
sult at port 2.

In order to show the above more conclu-
sively and to obtain an idea as to the effect
of the ratio Z;/Zy, (1) through (4) were used
to calculate the network response. Loaded
Q values of 50 and 100 were used with
Z1/Zy as a parameter. It was also assumed
that 20 =8;. The results of the calculations
are plotted in Figs. 2-5 for Q. =100.

It is important to note that the com-
puted results predict the experimentally ob-
served fact that a misaligned filter of this
type yields a double resonance response
shape.

To obtain a knowledge of the effect of gy,
the responses were calculated with 26/p;=%
as a parameter. It was assumed that B;
would have a linear frequency dependence
over the limited range of electrical angle of
the calculations. The results were plotted
and it was found that the primary effect of
having k31 is to shift the resonant fre-
quency to

k
;= k—jr“Ifo
where it has been assumed that
29 = . 1.
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